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Abstract. The coherent medium approximation is applied to study the frequency-dependent 
diffusion constant in two- and three-dimensional ant-termite like mixtures, where three 
types ol‘ jump rates, ‘normal’ (metallic), ‘superconducting’ and ‘insulating’ are distributed 
randomly. The DC diffusion constant vanishes when ( p  + r )  p ,  and is proportional to 
( p  + r - p c ) / (  rc - r )  when p + r > p c ,  where p and r are the probabilities that a given bond 
is metallic and superconducting, respectively, and z is the coordination number of the 
lattice, p c  = rc = 2/2. In the low-frequency limit, the real and imaginary parts of the AC 

diffusion constant go as A(z,  d , p ,  r ) f ( w )  and B ( z ,  d, p ,  r ) g ( w ) ,  respectively, a behaviour 
similar to the pure ant limit. The behaviour of f (w)  and g ( w )  is examined below, at and 
aboke the percolation thresholds, in both two and three dimensions. The coefficients A 
and B of these leading terms diverge as r + rc (superconducting region percolates), indicat- 
ing enhancement in the dielectric constant. 

1. Introduction 

Stochastic transport in disordered media has been studied extensively in recent years 
(Havlin et a1 1986, Haus and Kehr 1986, Hong et al 1986, Odagaki 1987, Havlin and 
Ben-Avraham 1987). Various physical and biological applications have been discussed 
by Shlesinger and West (1984) and Weiss and Rubin (1983). The stochastic motion 
of carriers is usually described by a random walk equation with random jump rates, 
i.e. carriers are assumed to perform a random walk in a random environment. The 
distribution of jump rates is selected to describe the actual stochastic nature of the 
system under consideration. For example, hopping conduction in doped semiconduc- 
tors has been investigated via a random walk model in which the distribution of jump 
rates is determined by the exponential distance dependence of jump rates and by the 
Hertz distribution of nearest-neighbour distances (Scher and Lax 1973, Odagaki and 
Lax 1981). The percolation model where a jump rate has non-zero probability of 
vanishing has been extensively studied by Odagaki et a1 (1983). This represents a 
simple model of binary mixtures (Kirkpatrick 1973, Hong et a1 1986). The bond 
percolation model is interesting in its own right, since the hopping model provides a 
physical description of the percolation process as a random walk (de Gennes 1976). 
De Gennes termed the transport process in normal (metallic) and insulating mixtures 
as an ‘ant in a labyrinth’. This term arises from the fact that one can replace the 
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conductivity problem with the diffusion problem using the Nernst-Einstein relation 
(Scher and Lax 1973). 

Recently, in a similar spirit, de Gennes (1980) proposed a termite model for 
conductance in binary mixtures where one element is superconducting and the other 
element is normal. His results did not show percolation phenomena. De Gennes' 
work has been investigated further by Coniglio and Stanley (1984), Adler et a1 (1989, 
Bunde et a1 (1985), Sahimi and Saddiqui (1985), Hong et a1 (1986) and Havlin et a1 
(1986). A close comparison between some of these models in one dimension has been 
carried out by Leyvraz et a1 (1986). Odagaki (1986) analysed the dynamic diffusion 
of the termite problem using the hopping model. His results show percolation 
phenomena in agreement with studies by previous authors except for de Gennes' 
treatment. He also showed that the termite limit of the trapping model leads to de 
Gennes result (Odagaki 1987). 

There have been several experimental studies of random and inhomogeneous 
systems in recent years which in turn have aroused deep interest in the subject. A 
review of the experimental studies in the subject is given by Deutscher et a1 (1983). 
A wide variety of experiments has been discussed in this review, ranging from conduc- 
tivities of thin films of lead deposited on an insulating substrate (Kapitulnik and 
Deutscher 1982) to thin films of superconductors deposited on a normal substrate (Orr 
et a1 1985). There have been conductivity measurements in ionic conductors mixed 
with an insulating phase, where both ant and termite limits seem to play an important 
role as pointed out by Bunde et a1 (1985). 

In this paper we address ourselves to the problem of ant-termite mixtures, i.e. a 
three-component system of normal (metallic), superconducting and insulating regions. 
This system is a special case of polychromatic percolation (Halley 1983). Following 
Odagaki and Lax (1981), in 9 2 we obtain the coherent medium approximation (CMA) 

equation for hopping conduction in the ternary system. In § 3 the static diffusion 
constant is investigated. In § 4 the AC diffusion constant is studied for ant-termite 
mixtures in the square and cubic lattices. The pure ant and termite limits are recovered 
in appropriate limits. A brief summary is given in § 5 .  

2. CMA equation for a ternary system 

The stochastic motion of a carrier is assumed to be governed by a random walk master 
equation (Scher and Lax 1973, Odagaki and Lax 1981): 

(1) 
a 

a t  S ' f S  

- P ( s , ~ ( s ~ , ~ ) =  - r s ~ ( ~ , t ~ ~ o , o ) +  w ~ ~ ~ P ( s ' , ~ ( s ~ , o )  

where the decay rate r, is given by the sum of nearest-neighbour jump rates, w,., 

r, = w,.,. 
S ' f  s 

The quantity P( s, t I so, 0) is the probability that a random walker is at site s after time 
t ,  when it started from site so at t = 0. We consider hopping conduction in a ternary 
system where the distribution of jump rates obeys the probability distribution 

P(w,,,) = p S ( w s s r -  w, )+qS(w, , , -  w , )+rS(wss8 -  w,) (3) 
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with 0 G p, q, r S 1 and p + q + r = 1. We set w p  = 1 and take w p  as the unit of frequency. 
We consider the AC diffusion constant and its critical behaviour in the p ,  q, r domain 
using the CMA method of Odagaki and Lax (1981). 

The CMA gives the self-consistent equation 

z 7 E+2(w1*-wc)  
1 

ZWC 
- ( 1  - ug, , )  = - = ( 4 )  

where g , ,  = P(1, U 11) is the Laplace transform of P(1, tI l ,O) ,  z is the coordination 
number, site 2 is the nearest neighbour of site 1, and the average (. *) is taken over 
wI2 .  The coherent jump rate w,( U )  is to be self-consistently determined by the above 
equation. For distributions given by equation (3), the self-consistent condition for 
w,(u) is reduced to 

1 - 4711 
ZW, 

where 

( 5 )  
2 ( a  + 6 + c )  -- - 

2~ ( 2  W ,  - wq - w,) + 26( 2 W ,  - W ,  - w P )  + 2 ~ ( 2  W ,  - wP - wq)  * V'B 

(6a) a = 2 p (  w p  - w,) b = 2 q ( w q -  w,) c = 2r( w, - w,) 
and 

D = 4[ (  wq + W,)U + ( W ,  + w p ) 6  + ( wP + w,)c]' 

- 1 6 ( ~  + 6 + C)(W,W,CI + W,W& + w,w,c). ( 6 6 )  
When c = 0, equation (5) is reduced to the self-consistent equation for the ant problem 
(Odagaki et a1 1983). 

The choice of + or - sign in equation ( 5 )  depends on whether Re{2(wr  - w,)a + 
2(w,-- wr )6}>O or <O. The transition probability g I l  in equation ( 5 )  is written in 
terms of the Hilbert transform F ( 5 )  of the density of states n(x) as (Odagaki et a1 1983) 

g,, = F ( 1 + u / z w c ( u ) ) / z W c ( ~ )  (7)  

where F ( 5 )  is defined by 

The self-consistent condition for w,( U )  given by equation ( 5 )  is a general expression 
for the ternary system. We consider here the ant-termite limit of the ternary system. 
Taking the limit of wq = 0 and w, = cc in the CMA equation ( 5 ) ,  we find 

-- 1 - ug,, w,(l+ r )  - w,,( l -  q ) l ~ v V  - 
ZWC 4(wc-  wp)wc  

where 
D'= [ w,(l+ r )  - (1 - q ) ~ , ] ~ - - 4 r w ~ (  w,- w p )  

(9) 

3. Static diffusion constant 

As can easily be seen, ug, + 0 as U + 0. Therefore, equation (9) in the static limit 
becomes 
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P 

Figure 1. A perspective view of the DC diffusion constant in the ( p ,  9, r )  plane for z = 4  
obtained by the CMA method. 

Supposing that 0 < w, < 00, we can simplify the above equation and obtain a solution 
for w, in the static limit 

2 2 / z - ( p + r )  
2 - 2  ( r - 2 / z )  ' 

wc=- 

When w, given by equation ( 1 2 )  does not satisfy 0 < w, < CO, then w, = 0 or w, = CC is 
the solution. Figure 1 shows the perspective view of w, on the triangular region 
represented by ( p ,  q, r )  for z = 4 .  Note that w, diverges as r approaches r c = 2 / z .  The 
phase diagrams for the z = 4  and z = 6  cases are shown in figures 2 ( a )  and ( b ) ,  
respectively. In the shaded regions of the triangles, none of the conducting phases 
percolate, though the system is normally conducting. 

It is worth pointing out that when r = O ,  the pure ant limit (Odagaki et a1 1983) is 
recovered 

ZD-2 
wc=- 

2 - 2  

and when q = 0 ( p  + r = l) ,  the termite limit (Odagaki 1986) is recovered 

2 
2 - z r '  

wc=- 

4. Dynamic diffusion constant 

In this section we investigate the dynamic or frequency-dependent diffusion constant 
in the ant-termite mixtures. The CMA equation (9) in the ant-termite limit can be 
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P 4 

r 

P f  a 

Figure 2. The phase diagram for the ternary system determined by the CMA method; ( a )  
two dimensions, ( b )  three dimensions. Bold full lines indicate phase boundaries where 
the coefficients of the AC diffusion constant diverge. In the shaded area neither supercon- 
ductor nor normal conductor percolates, though the DC diffusion constant does not vanish. 

written as 

{w,[  - z2r  + 2( 1 + r ) z (  1 - ug, 1) - 4( I - ug,  1)2] + w,[4( 1 - ug ,  , I 2  - 2 z ( 1 -  q ) (  I - ug ,  1)]) 

= 0. ( 1 3 )  

This equation is solved self-consistently for w, for the square and simple cubic lattices. 

4.1. Square lattice 

The density of states of the square lattice is given by a complete elliptic integral of 
the first kind K ( x ) :  

Therefore, the function F ( 5 )  given by equation (8) is also expressed in terms of K ( x )  
as 

The self-consistency equations (13), (7) and (15) were solved numerically for various 
values of p and r, and the dynamic diffusion constant D ( w )  is obtained from (Odagaki 
and Lax 1981) 

~ ( w )  = a2w, ( iw)  (16) 
where a is the nearest-neighbour distance. Figures 3 ,  4 and 5 show a frequency 
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Figure 3. The AC diffusion constant for the square lattice determined by the CMA method. 
The normal jump rate w,, is set to unity and is used as the unit of frequency. Full curves 
are the real part and broken curves are the imaginary part for various values of r when 
p=O.1 satisfying p + r s p , .  

dependence of the real (full curve) and imaginary (broken curve) parts of the diffusion 
constant for the square lattice. These figures show results for several values of r for 
p=O.1 ( p + r s p , ) ,  p = 0 . 3  ( p + r 2 p c ) ,  and  p = O S  ( p + r > p , ) .  

For r = 0.2, the low-frequency part of these figures is expanded in figures 6 (  a )  and 
( b )  in the logarithmic scale, where D ( w )  - D(0)  is plotted, with D(0)  determined by 
equation (12) for z = 4. 

Examining the behaviour of F ( 5 )  around 5 = 1, we can easily determine the 
low-frequency behaviour of the AC diffusion constant for general two-dimensional 
lattices. 

(i) For p + r > p,( 4) 

(ii) F o r p + r = p ,  

a’ ( - w  In 
D ( w )  2% (1 + i )  

(rc-r)1’2 ’ 

(iii) For p + r < p c  
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Figure 4. The same figure as figure 3 for p = 0.3 and various r satisfying p + r 3 p c .  
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Figure 5. The same figure as figure 3 for p = 0.5 and various r satisfying p + r >  p c .  
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Figure 6 .  The log-log plot of the AC parts of the frequency-dependent diffusion constant 
near the static limit for the square lattice determined by the C M A  method. The slope of 
the real part ( a )  is unity when p + r > p c  and two when p + r 4 pc;  the imaginary part ( b )  
is linear in w when p + r < p ,  and behaves as w In w when p + I > p c .  Both parts show 
logarithmic dependence on the frequency when p + r = p c .  

where a is a solution to 

F 1+- = 8 ( p , - ( p + r ) ) n  ( :a) 

Thus, the DC diffusion constant is zero when p + r G p ,  and is proportional to [ ( p  + r )  - 
p c ] / ( r c -  r )  when p +  r > p c  (as shown in equations (12) and (17)). Here r,( =;) is the 
critical probability that superconducting bonds percolate. The coefficients of the AC 

part of the diffusion constant diverge as p + r approaches p ,  in equations (17) and  (19) 
or  as r approaches r,  in equations (17) and (18). In the pure ant limit, i.e. r = 0, results 
obtained by Odagaki et a1 (1983) are recovered. The low-frequency behaviour is similar 
in both cases; however, as discussed above, the coefficients of the AC diffusion constant 
in ant-termite mixtures depend on both p and r. As r approaches rc the coefficients 
of the leading terms in the AC part of the diffusion constant diverge, indicating 
enhancement in the dielectric constant, e ( w )  OC Im D ( w ) / w .  The static dielectric con- 
stant, E ( O ) ,  is always infinity when 1 > p + r 3 p , .  

4.2. Simple cubic lattice 

Next, we solve the CMA equation (13) for the simple cubic lattice. In the numerical 
calculation, we approximate g , ,  for the simple cubic lattice by 

g,, =2[u+zw,+(u(u+2zw,))’”]-’.  (22) 
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This approximation is equivalent to assuming a semi-elliptic density of states 

(23) 
2 

n ( X ) = - ( l - x 2 ) 1 ’ 2 .  
lT 

Substituting the value of g,, from equation ( 2 2 )  in equation (13), and solving for w, 
self-consistently for various values of p and r, we obtain the dynamic diffusion constant. 
Figures 7 and 8 show frequency dependence of the real (full curve) and imaginary 
(broken curve) parts of the diffusion constant in three dimensions ( z  = 6) for several 
values of r, for p = 0.1 ( p  + r 5 p , )  and for p = 0.3 ( p  + r > p , ) ,  where p c  = 4. 

As in the two-dimensional case, examining the behaviour of F ( 5 )  around 5 = 1, 
we can easily determine the low-frequency behaviour of the AC diffusion constant for 
general lattices in three dimensions. 

(i)  F o r p + r > p ,  (=$) 

(ii) For p + r = p c  
1/2  a2 

6 (rc- r)”2’ 
D( w ) = - ( 1 + i)  

4 

N 

O \ - 
3 
4 
- 

2 

1 I I t /  

0 5 10 
w 

Figure 7. The AC diffusion constant for the simple cubic lattice determined by the CMA 

method with the approximate density of states. The normal jump rate w p  is the scale of 
frequency. Full curves are the real part and broken curves are the imaginary part for 
various values of r when p = 0.1. 
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Figure 8. The same figure as figure 7 for p = 0.3 and various values of r satisfying p + r > p c ,  

(iii) F o r p + r < p ,  

where a is the solution of 

F 1+- = 1 8 [ p , - ( p + r ) ] a .  ( 6 2  

Here, F ( 5 )  is defined by equation (8) and F’(5)  = dF([)/dt .  Consequently, the DC 

diffusion constant is zero when p + r p c  and is proportional to [ ( p + r )  - p c ] /  ( r, - r )  
when p + r > p , .  Here rc= ( 2 / z ) (  E+). As in two dimensions, the coefficients of the 
AC part of the diffusion constant also diverge as p + r approaches p c  or r approaches 
r,. In the pure ant limit, i.e. r=O, the results obtained by Odagaki and Lax (1981) 
are recovered. In the pure termite limit, i.e. p + r = 1 ,  the results obtained by Odagaki 
(1986)  are recovered. As r approaches rc,  the coefficients of the leading terms in the 
AC part of the diffusion constant diverge, indicating the enhancement in the dielectric 
constant. The static dielectric constant is found to be divergent at p + r  = p c .  

5. Summary 

In this paper we have applied the coherent medium approximation to a hopping 
conduction with ternary jump rates. For the sake of mathematical simplicity we 
specialised the distribution to ant-termite mixtures ( w ,  + CO, wq +. 0), a model physical 
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system. This system is also attractive in view of ceramic superconductors which may 
be a mixture of normal, superconducting and semiconducting phases. 

The static diffusion constant diverges as the probability of a given bond being 
superconducting reaches the percolation limit, i.e. r + rc - O+ (figure 1). The phase 
diagram on a triangular region represented by ( p ,  q, r )  is shown in figures 2(a )  and 
( b )  for two and three dimensions, respectively. In the shaded region none of the 
conducting phases percolates, i.e. it is the region of mixed phase normal conductor 
and superconductor. Pure superconducting, normal and insulating regions are shown 
in different sections of the triangle. 

The low-frequency behaviour in the ant-termite mixture is found to be similar to 
that in the ant model (Odagaki et a1 1983). The coefficients of the leading terms diverge 
as p +  r + p c  ( = ( 2 / z ) )  or r +  r, ( = ( 2 / z ) )  indicating the divergence in the dielectric 
constant. The static dielectric constant always diverges for p c  < p + r < 1 in two 
dimensions and for p + r = p c  in three dimensions. 

The AC diffusion constant is plotted in figures 3-6 for the square lattice, and in 
figures 7 and 8 for the simple cubic lattice. Note that as r approaches rc ,  the imaginary 
part of the AC diffusion constant diverges, implying divergence in the dielectric constant. 

To summarise, the transport properties become critical at p +  r = p c  and at r = rc .  
Critical exponents are readily obtained from (17)-(19) and (25)-(27). A direct com- 
parison of the present results is possible only for the DC diffusion constant in the pure 
ant and termite limits (Odagaki et a1 1983, Odagaki 1986). Although some exponents 
(for example, U ,  an exponent characterising the divergence of the diffusion constant 
in the termite model) agree with computer simulation (Bunde et a1 1985); other 
exponents determined by the CMA generally disagree with estimations by computer 
simulation or renormalisation group treatments (Bergman and Imry 1977, Kirkpatrick 
1973). However, we expect very rich critical behaviours to be seen in the ‘ant-termite’ 
mixtures. 
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